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Abstract. A procedure is developed that, in two iterations, solves the

hyperbolic Kepler's equation in a very efficienL manner, and to an

accuracy that proves to be always better than 10-2 (relative truncation

error). Earlier work on the elliptic equation has been extended by the

development of a new procedure that solves to a maximum relative error

-14

of 10- 4

1. Introduction

In an earlier paper (Odell and Gooding, 1986), we considered the

classical equation of Kepler for elliptic orbits, and recommended two

particular procedures for its solution. This paper was a greatly

shortened version of the authors' monograph (Gooding and Odell, 1985),

and all references to our 'previous work' in the present paper should be

taken to cite the two references just given. To complement the previous

work, we have now studied the hyperbolic equation, and the present paper

is a shortened version of the recent RAE report by Gooding (1987).

Though there is a very extensive literature on the elliptic equation,

several papers having appeared since our previous work, little hes been

published on the hyperbolic equation. Burkardt and Danby (1983) con-

sider it briefly, before passing to a generalized equation expressed

in terms of universal variables, whilst other authors, such as Bergam

and Prussing (1982), ondy consider hyperbolic orbits in the context of

the universal (generalized) equation.

The use of universal variables is aesthetically very attractive

and we discussed the universal equation briefly in our previous work,

is ashotene vesio of he ecen RA reort y Godin (187)
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referring in particular to the recent paper by Shepperd (1985). Since

then, one of us (Gooding, 1989) has been studying the use of universal

elements in conversion algorithms (to and from position and velocity),

but a conclusion of that study is that the best way to proceed, inside

the relevant algorithm, is still to solve the elliptic equation, the

hyperbolic equation, or Barker's equation, as appropriate.

The hyperbolic Kepler's equation is

e sinh H - H = Mh  (1)

where e (eccentricity) and Mh (hyperbolic mean anomaly) are assumed

known, and H (hypezbolic eccentric anomaly, often denoted by F ) is

to be determined. Since the range of e is from unity (rectilinear

hyperbolic orbit) to infinity (uniform linear motion, for zero attrac-

tive force), there is some advantage in rewriting equation (1) as

sinh H - gHf L , (2)

where

g l/e , L =Mh/e

we also define

= 1-g

Later we shall find further advantage in reformulating the equation so

that sinh H , rather than H , is the quantity to be determined.

Our approach to the iterative solution of equation (1), or equiv-

alently (2), has been to adhere as far as possible to the philosophy

underlying the final procedure that we previously recommended. In par-

ticular, we have sought a combination of starting formula and iteration

process accurate enough for the resulting procedure to have always met a
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given accuracy goal after a fixed small number (preferably two) of

iterations; assuming a smoothly continuous starter over the (e, M)-

data space, the output (H or sinh H) would then also be smoothly con-

tinuous. ('Smooth continuity' is meant to be synonymous with the term

'smooth portability' discussed in the previous work.) The accuracy goal

was expressed as a ceiling for the relative error in the output quan-

tity, the ceiling of 10- 13 being selected; as in the previous work, this

was related to the computer used for most of the work, but the goal has

not been the same, since for the elliptic equation the value of

10- (rad) had been an absoZure-error ceiling.

Section 2 describes two procedures that solve for H , and

Section 3 describes two procedures that solve for S ( - sinh H). As

the previously-developed iterator (described as 'HN' and providing

quartic convergence) was incorporated in all four procedures, Sections 2

and 3 mainly provide descriptions of the starters. Section 4 is devoted

to computer implementstion and results for the last (and best) of the

four procedures, and Section 5 describes a new procedure developed for

the elliptic equation, such that the relative-error goal used for the

hyperbolic equation can be met. Also included in Section 5 is a

discussion of an alternative iteration method, due to Laguerre and

recently recommended by Conway (1986); though it only provides cubic

convergence, it is much more robust than our standard iterator, so it

comes into its own when a good starter is not available.

The recommended hyperbolic procedure meets the 10- 13 goal with the

greatest of ease, since it provides 20-decimal-digit accuracy in all

cases. The new elliptic procedure does not do so well, the accuracy

provided being 14 digits.

- I
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2. Procedures solving for R

Our initial approach was to follow EK1(P1.2 (the final procedure developed

in the previous work) as closely as possible. The starting formula for

EKEPL2 was based on an interpolation between starters suitable for

e = 0 and e = 1 , the latter (E0 1) being a composite starter smoothly

patching together a cube-root expression and a bilinear expression.

Thus to solve (2), we required a special starter, H , for g - 1

after which the overall starting formula would be given by

HO - g H01 + g, sinh L , (3)

since sinh -L is the limiting solution of (2) for g - 0 . We assume,

for convenience, that Mh  is positive and that, as in the previous

work, HOI has a pair of components that are to fit smoothly together at

Mh = 1/6 . Then a suitable definition is

J (6Mh)1/3  if 0 4 Mh 4 1/6 (4a)

01 ln 2(Mh + 1/3) + 1 if Mh > 1/6 * (4b)

When the overall starter was coupled to the standard iteration

process, however, the resulting procedure gave somewhat disappointing

results. In particular, the accuracy after two iterations was much

worse than for EKEPL2. As shown by the detailed analysis of the

(hyperbolic) procedure by Gooding (1987), in fact, the guaranteed

accuracy is only seven decimal digits (relative truncation error), so it

was necessary to extend the procedure to a third iteration. This led to

an accuracy of at least 26 digits guaranteed, compatible with expec-

tation on the basis of quartic convergence, but the need for a third

iteration detracted from the efficiency of the procedure. The procedure

was in any case less efficient than EKEPL2, since equation (4b) cannot
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be evaluated as cheaply as a bilinear expression. But it was a third

defect of the procedure that was of most interest, and this is described

in the next paragraph; the defect is also suffered by EKEPL2, which is

why further attention was in due course given to the elliptic equation

as well as the hyperbolic.

For small values of Mh , equation (2) gives

H
3 
+ 6glH - 6L - 0 , (5)

and this is the basis for (4a), which is clearly an excellent starter

when gl 0. For gl > 0 , however, the neglect of the second term of

(5) can lead to a serious overestimate of H , which the interpolation

by (3) does little to remedy when g1  is only slightly greater than

zero (e only slighLly greater than unity). The overestimation is never

so gross as to affect convergence adversely, so long as this statement

is interpreted in terms of truncation error (and this applies to rela-

tive error, not just absolute error), but the effect on roindgna error

is another matter entirely, as shown in the detailed anaiyis. Even

here there is no problem with absolute error, because the iterator works

so well, but relative rounding error can only be reduced at a rate (per

iteration) deLcrminr by the computer word-length.

As already remarked, the defect of large relative rounding error

applies to EKEPL2, from the previous work, as well as to the hyperbolic

procedure being described. It was not observed before, however, because

the previous analysis was conducted almost entirely in ter'ss of &zsz~:

error, this being possible because of the periodic nature of E - M for

the elliptic equation; thus absolute error is bounded over the full

(infinite) range of M . In consequence, we did not look at very small

non-zero values of M ; had we done so, the problem would have come to

I
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light in the plotting of rounding error in Fig 6 of Odell and Gooding

(1986).

With a view to eliminating the defect just described, and in the

hope of devising a procedure for which two iterations would alwayb

suffice, we abandoned our initial approach to the solution of (2), in

favour of one based on the approximation (5). The new approach, as In

our previous consideration of the approximating cubic for the elliptic

equation, follows the notation of Ng (1979).

We define HO as the starter, which is a good epproximation for

small Mh  and arbitrary g , given by the (unique) solution of the

equation (cf (5))

H0 0 +3qH0 -2r = 0, (6)

where q = 2g, and r - 3L . As before, we note that (6) is the

classical cubic equation, for which we can do better than Ng by

expressing the solution with a single cube root, as

H00 = s - q/s , (7)

where (asstning Mh , and hence r , to be non-negative)

s . [(r2 + q3)h + r]I/3

This expression for %0 is still not cptia!, however, aq unnecessary

2rounding error will be experienced when s - q ; some algebraic

manipulation gives us the optimal solution as

H 0 0  = 2 2r 2 (8)
s + q + (q/s)

Since sinh- IL is appropriate, as a starter, for large values of

Mh (just as it was for small values of g ), we can use (8) as the
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basis for an overall starter. Thus H0 is defined, by use of weights

Mh and 1, as

H0  = (Mh sinh- L + HOO)/(Mh + 1) (9)

On coupling equation (9) to the usual iterator, we have a pro-

cedure that is free of the deficiencies of the first procedure. In

particular, there is no rounding-error problem, and the maximum relative

error (due to truncation) after two iterations is only 7 x 10

3. Procedures solving for S ( sinh H)

The development of the second procedure of Section 2 might have ended

our study of the hyperbolic equation, but an alternative approach was

thought worth looking at. In this, equation (1) is not just rewritten

as (2), but more significantly rewritten as

S - g sinh IS - L , (10)

where

S - sinh H (I1)

Then S , instead of H , is the quantity to be solved for.

There are at least two advantages in solving equation (10), as

opposed to (I) or (2). First, it is more efficient, since the only use

to be made of H is normally via sinh H and cosh H ; moreover, there

is no loss of accuracy in deriving cosh H as V(l + S 
2
) , in complete

contrast to the loss that can occur if cos E is derived from sin E •

Secondly, there is a gain in precision with the use of S , rather than

H , for large values of 1S 1 ; thus the evaluation of the composite

sinhlsinh-
1

function, like the composite exp(in) , cannot be relied
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upon to be the identity function when the argument is large. It is to

be noted, also, how great is the resemblance between the reformulated

equation and the standard elliptic equation, since g has the same

range as e for an ellipse, whilst sinh- x , like sin x , expands as

x - x 3/6 + 0(x ) As a final introductory point, we remark that the

hdnge of vaiiable from H to S is bound to affect the operation of

the iteration process; thus if we chose to solve both equations (1) and

(10), with starters (H0  and S ) related by (11), this relation would

not be preserved during iteration.

The first approach to a starter for equation (10) was based on the

direct modification of the successful solution of equation (2) via the

cubic equation (6). Thus we solve (6) for S0 0 1 rather than H00 , if

we replace the definitions of q and r by

q - 2gl/g and r = 3L!g (12)

In view of the possibly-zero denominators in (;2), however, it is better

if we write the cubic equation in the homogeneous form

3
a S0 + 3b S - 2c = 0 (13)

00 00

where a = , b = 2g, ( = gq) and c - 3L ( = gr) •

From S , the starter appropriate to small L (still, for con-

venience, assumed positive), we require the extension to an overall

starter, in analogy with (9). The most obvious analogy seemed to be

with So  given by

2
So  . (L

2 +S 00)/(L + 1)

but this gave disappointing results. Afte- some experimentation, it

was found that the starter defined by

S = S00 + L /(L + 5) (14)

-- m -- ,1 ,m ,,m~ 0 00mmmimm mm



worked much better, the constant, 5, having been determined

empirically. The results remained worse, rather than better, than those

derived using the second procedure for H , however, so it was decided

to investigate an entirely different type of starter.

One of the possible starters (the eleventh) discussed in our

previous work was a very complicated one, constructed on the rationale

that it should have the right form in the region of awkward convergence,

whilst at the same time matching the formal e-series expansion (of the

3
solution to the elliptic equation) to terms of order e . By 'having

the right form' etc, we just meant that, for e I and small M , the

starter should behave like 3/-6M , since the more stringeit constraint

(imposed by the cubic-equation approximation, cf(5), for e * 1) would

then be met by the series matching. It was decided to apply this

rationale to (the hyperbolic) equation (10), but to develop the desired

new starter in a straightforward and systematic manner by basing it on

Lagrange's expansion theorem (Whittaker and Watson, 1940).

The objective may be summarized as being an expression of the form

S 0 L + g B
- I / 3 

sinh- L , (15)

2where B - I + terms in g , g etc as required. Clearly

B - F(S)/F(L) , (16)

-3

where F is the function (sinh
- I )  

(a somewhat unfortunate notation as

'he t%.) negative signs have different meanings). We will use the

xpansion theorem to express F(S) as a function of L (with parameter

g ), and to help in this we define Z - sinh- L . Then the theorem

gives
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F(S) = F(L) + 9! D (n-l)(,nD F(L)) (17)

n-l

where D is the operator d/dL .

On performing the necessary differentiations and dividing by

F(L) , we find that (17) leads to

B = - gA)
3 

+ kg2£A3(3L(1 - gA) + g£A
2
(l - 2L

2
)) + O(g )  

, (18)

where A = sech 2 . But B has to behave like £ 2/6 , when g - 1 and

3
2 is small; so we give up the formally-accurate g term in (18),

writing instead

B - (I - gA)3 + g2£LA 3(9 - 8g)/6 + O(g
3 )  

(19)

Substitution of (19) in (15) gives the required starter. Coupled

with the usual iteration process, it works so well (as we will see in

the next section) that the resulting procedure constitutes our

unqualified recommendation for use in solving the hyperbolic Kepler's

equation.

4. Implementation and Results for the Recommended Procedure

The Fortran-77 function SHKEPL has been written to implement the

recommended solution procedure. Its arguments are L and gl , and it

is listed in Appendix A. The second argument is g, , rather than g

to minimize rounding error in the vicinity of (g,L) = (1,0), when

S - g sinh-IS has to be computed by the special subordinate function

SHMKEP, listed in Appendix B; SHMKEP operates in the Lame way as the

function (EMKEPL) we gave before, except that it is rather more

efficient since S - g sinh-1S is computed as g1
S + g(S - sinh- IS)

rather than (S - sinh- S) + g1 sinh- S " Two other (non-standard)
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subordinate functions are used by SHKEPL: DCUBRT for obtaining a cube

root; and DASINH for the inverse sinh •

The computer used for testing SHKEPL has mainly been a PRIME 750,

as in the previous study, but a Cray 1S was used for the most accurate

results. Though the input for SHKEPL is actually L and g, , the test

data consisted of a wide range of values for H and e , H being the

source for the reference value of S , from which the nominally input L

was obtained via equation (10). From the value, Si , extracted from

SHKEPL after i iterations, we have the relative error, oi , given by

a, - (Si - S)/S (20)

-30 4
For each e , the range of H extended from 10 to 10 , at a

fixed geometric interval, the maximum value of I a, I obtained being a

measure of the accuracy of SHKEPL with i iterations. (For normal use,

and as listed in Appendix A, i i; fixed at 2, but the values 0 and 1

were also of interest.) A very wide range of e was tested, extending

from unity to 10100.

Figure I provides plots of log a max I against log e , for

i - 0 (starter), 1 and 2 (standard SHKEPL). The range of e , here,

extends only from 1 to 10, as the accuracy is so good for higher values

of e . The accuracy is, in fact, striking, since it is evident that

SHKEPL gives at least 20 significant figures correct (for S) in all

circumstances. If the function is restricted to a single iteration, the

number of significant figures reduces to five - this is compatible with

the quartic nature of the iterator.

5. The Elliptic Equation revisited

In our previous study we established the merits of two particular

procedures for solving the standard Kepler equation



14

E - e sin E = M (21)

The second (and more accurate) of these procedures (EKEPL2) combined a

number of desirable features, as described in our papers; in particular,

the incorporation of a bilinear formula in the starter made it extremely

efficient. We failed to observe, however, that EKEPL2 suffers from the

relative-rounding-error defect remarked on for the first procedure of

Section 2. This may be regarded as a very minor weakness, which it does

not seem possible to remedy efficiently; for completeness, however,

we describe a procedure, modelled on the second procedure of Section 2,

that is free of this defect and retains all the merits of EKEPL2 other

than efficiency. We also take the opportunity to make some comments on

the application of Laguerre iteration to Kepler's equation, in the

light of the recent paper by Conway (1986).

We have seen, in the context of the hyperbolic equation, that the

relative-rounding-error defect could be eliminated by use of a cubic

approximation, for small H , valid for all e and not just e - 1 .

We adopt the same policy for the elliptic equation, requiring to solve

the equation, cf (6),

E00 + 3qE 0 - 2r = 0 , (22)

given in our previous work, where now

q - 2e1 /e and r - 3M/e , with e, I e

Again we prefer to solve the homogeneous equation, parallel to (13); the

function, DCBSOL, for doing this has (like DCUBRT and DASINH) been listed

by Gooding (1987).
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The solution of (22) for E0 0  provides a suitable starter for

small M (> 0) and any e (0 4 e 4 1) , so for arbitrary M over the

range [0,7T] we use the formula

2
M + (w - M)E 0 0E0 - (23)

Coupled to our usual iterator, this led to a new procedure, EKEPL3, of

arguments (as for EKEPLI and EKEPL2) M and e . To minimize rounding

error in the awkward region where (e,M) - (1,0), the second argument was

then changed to e1 and the resulting procedure given the name EKEPL.

The Fortran-77 function EKEPL is listed in Appendix C; it uses the

subordinate function EMKEP in the awkward region, but this function is

so like the original EMKEPL that it is not listed here.

Figure 2 provides, for the solution procedure EKEPL, plots of

log ImaxI '

where ti = (Ei - E)/E , (24)

for a (decreasing) range of e from unity to 10- 0 .27 5 (- 0.253). To

provide a comparison with the old procedure (EKEPL2), the corresponding

curve for that procedure is also given, for the definitive i - 2 . It

is seen that the new procedure does better, except when e > 0.95

(log e > -0.023) , and there is an apparent paradox here, since it was

for precisely the high values of e (approaching unity) that EKEPL2 was

defective. The paradox is easily resolved, however, since the defect

relates to rounding error, whereas Figure 2 only covers truncation

error: for e - 1 , both procedures give very small truncation error

when M is small (ie in the 'awkward region'!) and the curves of

Figure 2 are determined by 'macroscopic' values of M ; it is a tribute
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to the efficacy of the bilinear function, used in EKEPL2, that under

these circumstances EKEPL2 does so much better than the new EKEPL.

Figure 2 indicates that the accuracy for EKEPL is never worse than

about 14 significant figures. Though good, this is inferior to the

accuracy of SHKEPL. Since SHKEPL uses a starter based on Lagrange's

expansion theorem, it might be thought that, as for the reformulated

hyperbolic equation, we would do much better via this theorem than via

the cubic-equation-based starter. This is not so, however; results for

a procedure based on the expansion theorem, derived in exactly the same

way as for the hyperbolic equation, are actually worse than those given

by EKEPL. Despite this, we give the equations corresponding to (15) and

(19), for completeness; they are

E0  M + eB- 1/3 sin M

and

B - e cos M)3 + e2 sin 2M (9 - 8e)/6 + O(e')

We now discuss the merits of replacing our quartic generalized-

Newton iteration formula by one of the Laguerre formulae, which, though

they only give cubic convergence, are shown by Conway (1986) to be much

more robust than the Newton formulae.

The general Laguerre formula, for iterating to a root of the

equation f(x) - 0 , may be written

- -Nf (25)

i'll + V[(N - 1)2 - N(N - 1)ff"/f'2]}

where 6 - x xi and f is shorthand for f(xi_), etc; N may be

identified as the degree of the polynomial that is matched to f . Thus

N is normally taken to be a small integer () 2 , since for N - 1 the

formula reduces to the Newton-Raphson formula, of only quadratic
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convergence), but it does not have to be restricted in this way - the

formula is sound with N large, infinite, or even non-integral. Conway

expresses the denominator of (25) as f' t V[(N - ) 2fV
2 

- N(N - 1)ff"'

this provides a result in the (unrealistic) circumstance that V 0

but at the expense of the sign ambiguity (resolved, when V * 0 , by

giving the square root the same sign as V ).

There would be no advantage in substituting one of the Laguerre

formulae for our standard iterator in either of the procedures EKEPL2 or

EKEPL, or in any of the procedures developed for the hyperbolic

equation, since the starters in all these procedures are good enough for

the full (quartic) power of the existing iterator to operate. For

EKEPLI it is another matter, however, since the possibly slow

convergence here (infinitely slow in the limit) is completely overcome

with one of the Laguerre formulae. The advantage of iteration by (25)

is even more marked with the starter EO ?f , for which the Newton

formulae can lead to divergence.

Conway demonstrates the success of the Laguerre iterator in

solving Kepler's equation, taking the arbitrary value of N = 5 in

equation (25). This value is essentially a compromise, since in

straightforward cases convergence is usually more rapid with N

infinite. In the awkward region (where the Newton formulae fail or are

slow), however, much the best results are given with N - 3 , and the

reason for this has been given by Gooding (1987). The essence of the

matter is the following: for a function approximating to the polynomial

xn = A ( > 0), and an iteration step from a gross overestimate of the

n'th root, the only value of N , in (25), that makes the step a

quadratic (as opposed to linear) one is N - n ; for Kepler's equation,

the appropriate value of n is 3, so that N - 3 is the natural

choice. What happens in practice, using N - 3 and a poor initial
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value (and assuming an awkward-region problem still), is that iteration

steps are initially quadratic; the process Lhen slows down for a step or

two, but finaily homes in with the full rapidity of its nominally cubic

nature. When the starter is E0 - M , which underestimates E ,

convergence seems to be marginally better if the first step is taken

with N infinite, before switching (because E1  then overestimates

E, M being small) to N = 3 . This is of particular significance,

since the first step then has the simple analytical outcome

E M+sin 2 (26)
V(l - 2e cos M + e )

The right-hand side of (26) is simply the starter for EKEPLI; it is an

attractive formula, and was first used by Brown (1931).

The conclusions in regard to the Laguerre formulae are as follows.

When a good starter is available, they give no advantage. When the

starter is poor, on the other hand, there is an immense advantage to be

had, especially with N - 3 . The impact on our previous work is that

the procedure EKEPLI is greatly improved if the Halley iterator is

replaced by the Laguerre iterator with N - 3 .

6. Conclusion

We have sought to complement our previous work, on Kepler's (elliptic)

equation, by applying the same philosophy to the hyperbolic equation.

A number of solution procedures were developed during the new work, but

one of these seems superior in all respects and we unreservedly

recommend it. It is based on a reformulation of the equation, such that

sinh H rather than H (hyperbolic mean anomaly) is determined

directly; implemented in Fortran-77 under the name SHKEPL, it is listed

in Appendix A.



The procedure SHKEPL operates with a starting 
formula derived by

use of Lagrange's expansion theorem and with the quartic iteration

process developed in our previous work. Its accuracy is such that, in

the absence of rounding error, two iterations (built-in) should give 20

decimal digits correct in all cases. The effects of rounding error have

been held to a minimum, such that at most one (decimal) digit of

precision should be lost when the computer's word-length does not exceed

20 digits.

During the study, it was recognized that a particular relative-

rounding-error defect, identified in the first procedure developed,

would also apply to the more accurate of the two solution procedures

recommended for the elliptic equation. Though it is scarcely con-

ceivable that the defect could be of consequence in practice, we have

developed an alternative procedure, of comparable accuracy but not so

efficient; given the name EKEPL, it is listed in Appendix C. The

comments of the preceding paragraph (on SHKEPL) apply to EKEPL, except

that the nominal worst-case accuracy (after two iterations) is only

14 digits.

For the elliptic equation, which has to be solved so much more

often than the hyperbolic equation, we recommend all three solution

procedures (the two old ones, EKEPLI and EKEPL2, and the new one, EKEPL)

as being appropriate in different circumstances. A significant

improvement in the least sophisticated of them (EKEPLi) can be made,

however, if the Halley iterator is replaced by thc Laguerre iterator

with N = 3 .

We have not produced a 'universal procedure', for the universally

formulated Kepler's equation, because, in spite nf the mathematical

elegance of such a formulation, we regard it as of little practical

value. For numerical work that is accurate and efficient, it will always
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be necessary to solve different equations for the ellipse, parabola and

hyperbola. However, this in no way hinders the development of outwardly

universal algorithms for conversion between position and velocity, on

the one hand, and a universal set of orbital elements, on the other;

such conversion algorithms constitute the subject matter for the com-

panion paper (Gooding, 1989).

In the context of universa1 computation, we wish to end with a

remark on the recent response by Danby (1987) to our previous comment

(Odell and Gooding, 1986) on the disadvantage of using the Stumpff

function, S(x) , when x corresponds to a multirevolution angle in

an elliptic orbit. As he observes, the computation must then be based

on recurrence formulae, after the angle has been reduced (by factors

of 4) to a suitable magnitude. It is unfortunate that three of his

four recurrence formulae, (16), are incorrectly stated, the correct

versions being:-

2
co(4x) = 2[co(x)] - I Ic(4x) = co(x)cl(x)

2
C2(4X) = U [cl(x)I , C3(4X) = I [c 3 (x) + cl(x)c 2 (x)]

Considering just the first of these relations, we see that when-

ever co(x) is close to unity, in particular while Jxl is small, the

rounding error will be roughly quadrupled in each application of the

formula. The build-up will not be as rapid as this all the way from

x 1 ]0
- I 

to 10
6  

(to follow Danby's example), but the overall effect

will still be the loss of more than three decimal digits in cO(lO6
) 

.

If cos E is evaluated, on the other hand, with E 
= 

103 rad (because

x E 
2
) , the intrinsic loss (from storage of E itself) is at least

a digit less. Danby's technique is certainly viable (a much more rapid

build-up of rounding error might have been expected intuitively), but

how much simpler and more efficient to recognize an elliptic orbit as

such, and apply old-fashioned range-reduction!



Appendix A

THE SHKEPL PROCEDURE

DOUBLE PRECISION FUNCTION SHKEPL (EL, Gi)
C EQUATION EL = SHKEPL + (01 - 1)*DASINH(SHKEPL),
C WITH 01 IN RANGE 0 TO 1 INCLUSIVE, SOLVED ACCURATELY.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (SW=O. 5DO, AHALF=O.5DO, ASIXTH=AHALF/3 DO,

1 ATHIRD=ASIXTH*2D0)
S = EL
IF (EL.EQ.ODO) GO TO 2

Cl STARTER BASED ON LAGRANGE'S THEOREM
G = iDO -0 Gl
CL =DSQRT(1DO EL**2)
AL =DASINH (EL)
W = G**2*AL/CL**3
S = iDO - 0/CL
S = EL + G*AL/DCUBRT(S**3 + W*EL*(1.5D0 - G/O.75D0))

C2 TWO ITERATIONS (AT MOST) OF HALLEY-THEN-NEWTON PROCESS
DO 1 ITER=1,2
SO = *
51 SO + iDO
S2 = DSQRT(SI)
S3 = Sl*S2
FDD = G*SIS3
FDDD = G*(lDO - 2DO*SO)/(Sl*S3)
IF (ASIXTH*SO + 01 .GE. SW) THEN

F =(S - G*DASINH(S)) - EL
FD = DO - G/S2
ELSE
F =SHMKEP(G1, S) - EL
FD =(SO/(S2 + IDO) + G1)/S2

END IF
DS = F*FD/(AHALF*F*FDD - FD*FD)
STEMP = S + OS
IF (STEMP.EQ.S) GO TO 2
F = F + DS*(FD +4 AHALF*DS*(FDD + ATHIRD*DS*FDDD))
FD = FD + DS*(FDD + AHALF*DS*FDDD)

1 S = STEMP - F/FD
2 SHKEPL = S

RETURN
END
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Appendix B

AN UNSOPHISTICATED SHMKEP PROCEDURE

DOUBLE PRECISION FUNCTION SHMKEP (Gl, S)
C ACCURATE COMPUTATION OF S - (1 -Gl)*DASINH(S)

C WHEN (01, S) IS CLOSE TO (0, 0)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
G = iDO - G1

T = S/(lDO +4 DSQRT(1D0 + S*S))
TSQ = T*T
X = S*(G1 + G*TSQ)
TERM = 2D0*G*T
TWOI1 = 1DO

1 TWOIl = TWOll + 2D0
TERM = TERM*TSQ
xO =X

X =X - TERM/TWOI1
IF (X.NE.XO) GO TO 1
SHMKEP = X
RETURN
END



Appendix C

THE EKEPL PROCEDURE

DOUBLE PRECISION FUNCTION EKEPL(EM, El)
C KEPLER'S EQUATION, EM = EKEPL - (1 - El)-DSIN(EKEPL),
C WITH El IN RANGE 1 TO 0 INCLUSIVE, SOLVED ACCURATELY
C (BASED ON EKEPL3, BUT ENTERING El NOT E)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMEaiER CPI=3.14159265358979323846264338328D0,TWOPI=200*PI,

1 PINEG=-PI, SW=0O25D0, AHALF=0.5D0, ATHIRD=AHALF/1.5D0)
Cl RANGE-REDUCE EM TO LIE IN RANGE -PI TO PI

EMR = DMOD(EM,TWOPI)
IF (EMR.LT.PINEG) EMR EM1R + TWOPI
IF (EMR.GT.PI) EMR = EMR - TWOPI
EE = EMR
IF (EE) 1,4,2

1 EE =-EE

C (EMR IS RANGE-REDUCED EM & EE IS ABSOLUTE VALUE OF EMR)
C2 STARTER BY FIRST SOLVING CUBIC EQUATION

2 E = DO - El
W DCBSOL(E, 2D0*El, 3D0*EE)

C3 EFFECTIVELY INTERPOLATE IN EMR (ABSOLUTE VALUE)
EE =(EE*EE + (PI EE)*W)/PI
IF (EMR.LT.ODO) EE =-EE

C4 DO TWO ITERATIONS OF HALLEY, EACH FOLLO ED BY NEWTON
DO 3 ITER=l,2
FDD = E*DSIN(EE)
FDDD = E*DCOS(EE)
IF (EE*EE/6D0 + El .GE. SW) THEN

F =(EE -FDD) - EMR
FD = DO -FDDD

ELSE
F =EMNEP(E1,EE) - EMR
FD =2D0*E*DSIN(AHALF*EE)**2 + El

END IF
DEE = F*FD/(AHALF*F*FDD - FD*FD)
F =F + DEE*(FD +- AHALF*DEE*(FDD + ATHIRD*DEE*FDDD))

TO REDUCE THE DANGER OF UNDERFLOW REPLACE THE LAST LINE BY
C* W = FD +AHALF*DEE*(FCD +~ ATHIRD*DEE*FDDD)

FD = FD +DEE*(FDD + AHALF*DEE*FDDD)
3 EE = EE + DEE - F/FD
DULIF REPLACING AS ABOVE, THEN ALSO REPLACE THE LAST LINE BY

C* 3 EE = EE - (F - DEE*(FD - W))/FD
C5 RANGE-EXPAND

4 EKEPL = EE + (EM - EM)
RETURN
END
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